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ON A MEANS OF OPTIMAL CONTROL BY THE EXTREMAt AIMING METHOD* 

V. M. KEIN, A. N. PARIKOV and M. Iu. SMUROV 

A way is suggested for the approximate realization of the extremal aiming method 
#at essentially lowers the required rapidity of the computing device used in the 
control loop. The results of simulating quasi-optimal control processes for the 
flight path of an aircraft at landing, by the way proposed, are presented. 

The direct application of the extremal aiming method /l/ for solving many practical 
problems is made difficult by the stringent requirements on the rapid action of the computing 
device used in the control loop. The rapidity of response requirements can be eased by taking 
into account the peculiarities of the object being controlled when the optimal control is 
synthesized on switching surfaces /2/. However, the switching surfaces have to be constructed 
in an in-t-I)-dimensional space of the object's positions, which presents extreme difficulties 
not so much because of the large amount of computational work as owing to the complexity of 
presenting the results. A simple decision rule can sometimes be obtained /3-S/ with a piece- 
wise-linear approximation of the switching surfaces, but in generally the n dimensions of 
the vector of the object's state essentially limit the application field of these methods. 
In the present paper a way is suggested for realizing the extremal aiming method fox a wider 
class of conflict control problems, when it is required to ensure a prescribed object state 
in a k-dimensional subspace of lower dimension than the state space. In this case the 
problem is reduced tothe constructionof switching surfaces in a (kf l)-dimensional space, 
which permits an essential lowering of computer rapidity requirement and to simplity the 
procedure for choosing the optimal control. 

1. Statement of the problem. Let an object's motion be described by the equation 

I' = A (t) 2 + B (t) u i c (t) u, z (0) = JO, t E IO, 01, ZJ 0) E p (& lJ W E 0 (L) (1.1) 

where z is the n -vector of state, u is the control r-vector, v is the perturbation m- 
vector, A,B,C are coefficient matrices, P and Q are time-dependent convex compacta. The 
control performance is evaluated by a terminal criterion of form 

I = maxl Z's (8) i p (1) (1.2) 

Here I = (C' : 0’)’ is an n-dimensional vector whose last n-k components are identically 
zero, Ik is the unit k-vector, p (1)p 0 is the support function of the convex and compact 
terminal set M(t?) in a k-dimensional subspace of the object's state space {.r}, and the prime 
denotes transposition. Criterion (1.2) has the sense of a normed error; the guaranteed con- 
dition of control success is 

I, = max,I( 1 (1.3) 

It is required to construct a position control strategy u*(t,s) minimizing the guaranteed 
bound (1.3). 

2. Extremal aiming. We present the basic aspects of the extremal aiming method /l/, 
needed for the subsequent exposition. The attainability domains G(r) (0) and iW (0) for 
the motions of object (1.1) under the actions of control tf and perturbation V, respectively, 
are constructed at instant 0 for the realized postion {t, .r}- Since criterion (1.2) depends 
only on the first li coordinates of vector 2, the domains G(r) and G(Z) are constructed in 
the corresponding k -dimensional subspace of space 1x1. To the boundaries of the attainabil- 
ity domains correspond maximum values of the polar distances of the support hyperplanes, which, 
according to /l/, are determined by the relations 

The vector [l'x (8, 7)1' = S (r) corresponds to the solution of the equation adjoint of the homo- 
geneous Eq. (l.l), i.e., 

dsldT=--A’(T)s, t<r<e (2.2) 
with boundary condition s (0) = 1. The predicted value of the performance index (1.2) is 
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determined by the expression 

Z (1) = rnagl [I.,* (I, t) - rl*(I, 1)l / p (I) = maxi cp (I) = v (1*) 

The extremal actions U* (t) and L*(t) are selected from the maximum conditions 

s' (L*, 2) B (t) u* (t) = mal,, J- s' (1*, t) B (t) u (t)J 

s’ (L*, t) C (t) c* (t) = max, s' (L*, t) C (I) u (t) 

(2.3) 

(2.4) 

(2.5) 

3. Synthesis of the optimal control. We introduce the linear transformation 

y (6, t) =z Xh. (0, 1) 2 (t) (3.1) 

where XI, (0, 1) is a (k X II)- t ma rix composed from the first k rows of the fundamental matrix 

of solutions of (1.1). With due regard to equalities ’ I s (0, t) y I,; A~>,. (0, t) and to (3.1) the 

second relation in (2.1) can be rewritten as 
r?il'(I,l)=lh.'y(O,t)+ Ilias,~i'X(~,r)C(~)c(~) dt (3.2) 

Thedirectionof l* fortheinstant t, usedwhen selefcting u*(t) inaccordwith (2.4),isdetermined 
onlybythe relative dispositionofdomains G(r) and G(*) which,accordingto (3.2), is characterized 

byvector ~(8, t). The signofcontrol Ui*(t,Z) essentiallydepends uniquelyon 1* and,consequently, 

on thepredictedterminal state y(8,t) of the object, i.e., 

ui* (t, 3~) = Ui (t) sign {Si (t, y)) (3.3) 

holds. The function 61 (t, y) = 0 specifies a switching surface for the components of control 

vector ui* in space {t, y}, while lJi is the i-th component of vector U satisfying the con- 

straint in (1.1) and ensuring the maximum in (2.4). The nature of surfaces 19~ is determined 

by the equation and the contraints in (1.1) and by the performance index (1.2), which enables 

us to obtain beforehand the functions 61 by the mathematical simulation method and to make 

numerical approximations of them. Then during the control we only need to compute the co- 

ordinates of vector y(i?l,t) and to determine its position relative to the switching surfaces, 

using the coefficientsof the approximating expressions for 81,. Since the complexity of 

approximating function tii (t, y) grows as this function's domain increases, it is advisable to 

limit the domain of possible initial states of the object 

z (0) E G, (3.4) 

The boundaries of domain G, are determined by operation requirements; in particular, this 

can be a domain in the object's state space, for which a successful solution of the control 

problem is guaranteed under any perturbations satisfying the constraint in (1.1). When (3.4) 

is fulfilled the possible positions of vector y (0, t) defining the predicted terminal state 

of the object lie in a bounded set Y in space {t,y); therefore, it is enough to determine 

the function fl (t, y) only for positions {t, y} E Y. Since the approximation of functione(t, y) 

is practically always implemented inexactly, a certain difference in the control processes 

obtained here from the processes in the strictly optimal system is inevitable. To stress this, 

the solutions obtained by the approximate method are subsequently called quasi-optimal. 
Since the vector y(e,t) determines the predicted terminal state of the object in its 

proper motion from position (t,s}, the value of y can be obtained by integrating the homo- 

geneous Eq. (1.1) on the interval Jt,OJ with initial condition for z(t). The coordinates of 

vector y can also be obtained by using transformation (3.1); in this case it is necessary to 

make a numerical approximation of the row-vectors X[il (0, t) of matrix Xk (e,t) as functions 

of argument t, that describe the object's proper motion in terms of coordinates zi, i = 1, . . 

. 1 k. Then the integration of the homogeneous Eq. (1.1) on interval Jt,eJ is replaced by the 

computation of y by formula (3.1) with the use of the coefficients of the approximating ex- 

pressions X,[Q (e, t). 

4. Example. lo. The lateral motion of the average transport aircraft during the 

final stage of landing approach can be described by the following equation /S/: 

2' - AZ + by, + cW,, t E [O, 01, 0 = 15 c, I = (I z'rp 9' y IO)' (4.1) 

0 1.0 0 0 0 0 
0 -0_07G?. -5.34 0 9.81 0 
0 0 0 

A= 0 -0.OO5G -0.392 
1.0 0 0 

-0.0589 -0.0378 -0.17 
0 0 0 0 -t 0 0 
0 -0.0129 -0.9016 -0.2Oi5 -0.0869 -0.89* 

b = co1 (0 ,O, 0, 0.0378,1.0, 0.0869), c = col(0, 0.0562, 0, 0.0056, 0, O.Oi2g) 

Here z is the lateral deviation of the aircraft's center of mass from the runway axis, $ and 

Y are the yaw and bank angles, respectively, zd is an auxiliary variable. The admissible 
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magnitudes of the control (specified bank ~3) and of the perturbation (cross-wind velocity 

IVZ) are bounded in absolute value 

1 ye(I) 1 --, !L (t) = O.?til3-O.0il(i r,rad; I W,(t) I x.:v = 10 m/s (4.2 

The performance index (1.2) corresponds to the following (F. is 

202'): 

The support function of the terminal set .W(R) is described by 

the polar angle in the plane 

(4.3) 

(4.4) 

1.7 

The switching surface of control y3* was constructed using computer simulation of the control 

processes by the extremal aiming method. The attainability domains G") and G@) were con- 
structed at discrete instants from interval [O,O] as enveloping domains of the p support 
lines on plane 202'. The values of function Ar(5), giving the difference between the polar 
distances of domains CC') and Cu), were determined by solving a system of 2nfp differen- 
tial equations. The solutions of the first % equations of form (2.2), ~(1) and &), cor- 
respond to the first two rows of the fundamental matrix of solutions of Eq. (4.1), while the 

remaining p equations have the form 

ds zn+j / dt = / (s(l) cm hj $ s@) sin hj)'c j v - 1 (s(l) Cm hj $ sc2) sin ?bj)'~ / TV (r), s~,+~ (0) = 0, 0 < r e 0 _ t (4.5) 

j = 1,.,.,/l 

The direction of extremal aiming li* for the instant t was determined by the condition for 

maximizing function (2.3), which has the form 

'p (Aj) = [y(l) cos h. I + yCJ) sin hj f Ar (hj)] / p (Lj), j = 1, ., p (4.6) 

where $I) and $3) are the coordinates of the object's terminal state on plane 202.. 
The section of surface S by the plane t E ti corresponds to a solution of Eq. (4.7) and 

the boundary of domain Y (ti) , of Eq. (4.8): 

[d’) cm r.* + s(2) sin a*]‘b _ 0 (4.7) 

y(l) cos i* + v(') sin h* + Ar (J.*) = p (i*) (4.8) 

When constructing the attainability domains the equation system (4.5) was integrated by the 

Hemming predictor-corrector method with step 0.1 s The values of function Ar were com- 

puted in the upper halfplane of zOa' (because of the symmetry of domains C(l) and (:t2) relative 

to the origin) for 60 values of angle h. This ensures the determination of li* to within 
&i,S" and requires the integration of a system of 72 equations. The construction of function 
6 and of the boundary of domain Y(t) with time step At=!is (see Fig.1 where only the 

upper halfplane of ZOZ' is shown because of the symmetry of e(t) and Y(t) took about 1 min of 

processor time on the computer M-4030. For the synthesis of the quasioptimal control ?%*(t) 

-60 0 60 

Fig.1 I 

w 

Fig.2 

the following approximate description was adopted for the switching surface inside domain Y. 

At each instant tElO,el the section of surface 6 was specified by two lines (A and B in 

Fig-l) whose equations are 

$') -- R (f) p = 0, qy(‘) + .gp - L (f) = 0, (II = (1 + ,2)f’1, o2 _ __o (1 + ,2)-‘/i (4.9) 
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Here y (t) and o are the angular coordinates of lines A and B in plane 202'; L(t) is the 

polar distance of line B. The functions K(t) and a, as well as the variations of the 

vector-valued function s(l) (1) and s(2) (t) , on the interval [0,0] are well described by poly- 

nomials of a degree no higher than six (the errors of the uniform approximation are not more 

than 8%). To select the sign of w in control vnn*(t) it is sufficient to make two successive 

verifications of the signs of the left hand sides of (4.9) for values of Y(I) and u(') computed 

for instant t. Then the value of control vsa*(t) is determined as 

Y:ra* (t) = p (t) sign w (4.10) 

To estimate the influence of the magnitude of the time step A,,t on the control perform- 

ance the aircraft's motion was simulated under conditions of extremal perturbations with in- 

formation discrimination of the control. The control ~.<~*(t) was chosen in accordance with 

(4.10) and a numerical procedure for constructing the attainability domains, presented above, 

was used for selecting the perturbation II-,* (i) . The value E.* was determined from the con- 

dition of maximizing the polar distances of the attainability domains with due regard to the 

variation of domain C 'U that corresponds to the object's motion on interval If, l-t &,!I under 

the action of control vza*(f) chosen at instant i . The extremal perturbation was chosen in 

accord with maximum condition (2.5) which in this case has the form 

w,* (t) = v sign ([F (0 - t ) cos I.* + P) (0 - t) sin ha 1'~) (4.11) 

1. 2 

H!!l 

Simulation of the control processes (see Fig.2) was carried outwith 

II2 / 

the choice of usa* by rule (4.10) for the cases when the object's pre- 

0.8 VI 
dieted state is determined by integration of the homogeneous Eq. (4.1) 

3 
0.4 

:I& 

on the interval It,@ (curves 1) and with the value of ~(0,t) computed 

by formula (3.1) (curves 2). The aircaft's motion was also simulated 

with the exact choice of 1?*(t) by the extremal aiming method (curves 3). 

3 
The dependence of the perfromance index (4.3) on the magnitude of A:J 

$2 for various initial states of the object (see Fig.3; its upper part cor- 

responds to Z(O) = 50 m, the lower to z((I)=O) was obtained for the same 

0 0,1 0.2 A,t, S cases (curves l-3, respectively). For a small period A,t the perform- 

Fig.3 
ance index of optimal control y3*(t) depends weakly on the initial state 
5 (0) E Cio and does not exceed the index values obtained with the quasi- 

optimal control VXo* (t). An increase in &t causes a noticeable depend- 

ence of the estimate on z(U), which is explained by the errors due to the 

discrete approximation of the extremal strategy YJ*(t). This dependence is aggravated for 

the reason that the control game problem being analyzed corresponds to an essentially irregular 

case of a pursuit-evasion game when the size of domain G (I) diminishes with time significantly 

faster than that of CC') and when function cp can have more than one maximum /l/. The instant 

of appearance of the second maximum of function cp and, consequently, its magnitude, depends 

on the initial state 5 (0). In the case of a comparatively large magnitude AUt the realisa- 

tion of strategy vs*(t) differs somewhat from the optimal strategy when A,t-0; therefore, the 

estimate of the performance index of the quasi-optimal control ?.I"* @) may not exceed the 

estimate of the index obtained for the optimal control y3*(t). 

2O. TO evaluate the effectiveness of the proposed control algorithm we determine the 

requirements onthe rapidity and the memory of the controlling computer for the considered 
example of control of an aircraft's lateral motion at landing. We take it that the addition 

operation corresponds to an elementary machine operation, and that multiplication takes twice 

as long as addition, which is typical of the majority of modern computers /6/. When synthes- 

izing the optimal control the greatest economy in time for the construction of the attain- 

ability domains is achieved by a simultaneous integration of the system of 2nfp Eqs.(d.s). 

With a step Ah= 3" (p = 60) a system of 72 equations must be solved on each interval A,t.For 
an interval e=15s with a step of 0.1 s the general number of integration steps is 150. 
Let the numerical integration be carried out by a method requiring at each step a double com- 
putation of the right-hand sides of the system of equations(4.5). Their single computation 

requires 2na(l + 2)+ 2p(4n.2+ a+ I)=6756 elementary operations. Then the total number of 
operations is 2.03.108. With due regard to the additional operations on the choice of b* 
and on the formation of control Y3* (t) and under the condition that A,: = 0.1 s we obtain 
a requisite rapidity of 2.04.10' operations per second. The volume of computer memory requir- 

ed is determined by the number of cells for storing the coefficients of Eq. (4.1) and of func- 
tions (4.2) and (4.4), as well as by the number of working cells for carrying out the inte- 
gration, for choosing Ai, etc., which adds up to about 150 memory cells. 

When synthesizing the quasi-optimal control about 100 operations are required for comput- 

ing the coefficients K(t) and r,(t) in Eqs. (4.9) on each interval A,,t. The determination of 
the values of +Jl) and ?/tz) by integrating Eq. (4.1) with steps of 0.1 s requires the 
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2n*(i + 2) 150 = 3.24.10' operations. With &it= 0.1 s the requisite computer rapidity for realiz- 
ing this variant can be estimated to be 3.2S.105 operations per second. In this case 70 cells 
are required for storing the coefficients of Eqs. (4.1) and (4.9) and 30 working cells are 
required for the integration and for choosing u'. For the computation of the coordinates 
y@.f) by formula (3-l), 2n.6(1+ 2)- 256 elementary operations are required,which forA,$- 0.1s 

yields a requisite rapidity of 3160 operations per second. In this case 110 coefficients 
of the approximating polynomials of functions 8(') (t) ,s”)(t), R(t), L (t) must be stored and 20 work- 
ing cells are required for choosing the control. Thus, the use of the proposed algorithm 
permits an essential lowering of the requirement on the controlling computer's rapidity (by 

more than 6.1oJ times for the example considered) without increasing the memory volumerequir- 

ed. 
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